Below you will find pages that utilize the taxonomy term “Algebra”
Cyclotomic polynomial in infinite primes
下午从七分厂返回,和大 N 老师聊天提到数论,于是知道了这个证明.
Thm. For every fixed $m$, there are infinitely many prime numbers of the form $km+1$ where $k\in\mathbb{Z}$.
Lem 1. $n\gt1$, $p$ is prime, if for some $x\neq\pm1$, $p\mid\Phi_n(x)$, then either $p\mid n$, or $p\equiv_n1$.
Pf. of Lem 1. If for some $d\mid n(d\lt n)$, $p\mid x^d-1$, then $p\mid (x^d-1,\Phi_n(x))$. Since $\Phi_n(x)$ does not share any roots with $x^d-1$, we have $\Phi_n(x)\mid\frac{x^n-1}{x^d-1}$. Thus $p\mid(x^d-1,\frac{x^n-1}{x^d-1})$, where $\frac{x^n-1}{x^d-1}=\frac{(x^d-1+1)^{\frac{n}{d}}-1}{x^d-1}=A(n^d-1)+\frac{n}{d}$ (note that this requires $x^d\neq1$). Then $p\mid\frac{n}{d}\mid n$.
Field Extensions
arima要学algebra,所以变成了algebraic-arima
Lemma 1. $[K:F]=[K:E][E:F]$, 如果$K/E/F$是域扩张.
若 $[K:F]$ 有限,则称$K/F$是有限扩张.
构造
通过向域$F$中添加元素来扩张.
设 $K/F$, $S\subseteq K$,$S$是$K$的子集,$F(S)$表示$F$和$S$生成的最小扩张.
Lemma 2.
$F(S)=\{\frac{f(u_1,\dots,u_n)}{g(u_1,\dots,u_n)}: f,g\in F[x_1,\dots,x_n],g|_u\neq 0,u_i\in S\}$
若$S$有限,则称$F(S)$为$F$上的有限生成扩张.
Proof. 首先$RHS$是域.
最小$\Longrightarrow$
$F(S)\subseteq RHS$;
$RHS$是域,$F\subseteq RHS$,$S\subseteq RHS$,故$F(S)\subseteq RHS$. $\blacksquare$
Corollary 3.
如果$\alpha\in F(S)$,存在有限子集$S_0\subseteq S$,使得$\alpha\in F(S_0)$.
Lemma 4.
$F(S_1\cup S_2)=F(S_1)(S_2)=F(S_2)(S_1)$.
Proof. $F(S_1\cup S_2)$ 是
包含$F$和$S_1\cup S_2$的最小域,故$F(S_1\cup S_2)\subseteq F(S_1)(S_2)$.
$F(S_1)(S_2)$ 是包含$F(S_1)$ 和 $S_2$的最小域,故$F(S_1)(S_2)\subseteq F(S_1\cup S_2)$.
$\blacksquare$
Corollary 3 和 Lemma 4 说明,域扩张的构造是可交换的,
而且可以通过有限次的构造得到(?).
总之,域扩张可归结为单扩张.
单扩域
$K/F$ 中至少有一个元素是超越的,则称$K/F$是超越扩域. 否则为代数扩域.
例如,域$F$上的有理函数域$F(x)=\{\frac{f}{g}:f,g\in F[x],g\neq 0\}$是超越扩域(不存在$f$使得$f(x)=0$).